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Solution of three-dimensional incompressible flow problems 
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Department of Chemical Engineering and Chemical Technology, 

Imperial College, London 

(Received 4 October 1976 and in revised form 18 March 1977) 

A method for solving quite general three-dimensional incompressible flow problems, 
in particular those described by the Navier-Stokes equations, is presented. The 
essence of the method is the expression of the velocity in terms of scalar and vector 
potentials, which are the three-dimensional generalizations of the two-dimensional 
stream function, and which ensure that the equation of continuity is satisfied auto- 
matically. Although the method is not new, a correct but simple and unambiguous 
procedure for using it has not been presented before. 

Introduction 
The time-dependent flow of an incompressible fluid in a three-dimensional domain 

R is governed by the equation of continuity 

V . u = O  in R (1) 

and the momentum equations, which in the case of the isothermal flow of a Newtonian 
fluid are the Navier-Stokes equations 

8ul8.t + (u . V) u = -p-l V p  + VAU + F in R, (2) 

together with boundary conditions u = v on aR, the boundary of R, and initial 
conditions u = u,, at time t = 0, where u and p denote velocity and pressure, res- 
pectively, p and v denote density and kinematic viscosity, respectively, F denotes 
body forces which apply to the whole of a fluid element, t denotes time and A denotes 
the vector Laplacian, which is distinguighed from the scalar Laplacian, denoted by V2. 

Two of the main difficulties inherent in determining the flow of an incompressible 
fluid are, first, that the momentum equations, whatever form they take, have to be 
solved subject to the continuity constraint ( 1 )  and second, that there is no evolution 
equation for the pressure. A method for overcoming these difficulties in two-dimen- 
sional flow problems, the vorticity/stream function method, is well known. The 
expression of the velocity in terms of a stream function @ automatically ensures that 
the velocity field is solenoidal, so that the equation of continuity is satisfied, while 
the introduction of the vorticity y by cross-differentiation and subtraction of the 
momentum equations eliminates pressure as a dependent variable. Thus the diffi- 
culties of satisfaction of the continuity equation and the lack of an evolution equation 
for the pressure are eliminated in two-dimensional problems by replacing the primitive 
variables u and p by the derived variables @ and y. 

t Present address : Department of Chemical Engineering, University of Cambridge. 
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It is often asserted that the vorticity/stream function method does not generalize 
to (non-axisymmetric) three-dimensional problems, but this is untrue. The three- 
dimensional generalization is the so-called vorticity/potential method. Here the 
expression of the velocity as the curl of a vector potential, 

u = V A A ,  (3) 

ensures that the equation of continuity (1)  is automatically satisfied, since the diver- 
gence of the curl of any vector field is identically zero. Similarly, the introduction of 
the vorticity 

W = v A U  (4) 

by taking the curl of the terms in the momentum equations eliminates pressure as a 
dependent variable, since the curl of the gradient of any scalar field is identically zero. 

Although the vorticity/potential method is not new in hydrodynamics applications, 
there has been much confusion and unnecessary complication over its application, 
in particular over the boundary conditions appropriate to the vector potential. It has, 
for example, been asserted by Timman (1954) that, if the flow domain R is simply 
connected and the velocity u vanishes on the boundary aR of R,  the vector potential 
A also vanishes on aR. This, as Moreau (1959) showed, is untrue. Similarly, Roache 
(1972) asserted that, if the velocity u vanishes on aR, the tangential components of 
the vector potential A vanish on aR, as does the normal derivative of the normal 
component of A. This is true only if the domain R is simply connected and the boun- 
dary aR is planar. Again, Hirasaki & Hellums (1968) required the solution of a second- 
order partial differential equation in order to obtain the boundary conditions on the 
vector potential, which, although correct, is over-complex, and quite unnecessary. 
Later, Hirasaki & Hellums (1970) realized that a simplification in the boundary con- 
ditions is possible ifa harmonic scalar potential $ is used as well as a vector potential A: 

u = V#+VAA.  (6) 

By choosing the particular boundary conditions for A that they did, however, they 
required $ to be (infinitely) many-valued in multiply connected flow domains, which 
is an increased and unnecessary complication. 

The purpose of this paper is to give the correct set of boundary conditions on the 
scalar and vector potentials simply and concisely, and to show how to apply the 
vorticity/potential method unambiguously and correctly to solve quite general three- 
dimensional incompressible flow problems. This will be done as follows. First of all, 
certain results from potential theory will be presented. Although the basic results are 
not new, they are not well known and, in view of the errors made, in particular over 
the boundary conditions appropriate to the vector potential, they clearly need to be. 
Then, given the necessary theory, a procedure for solving arbitrary three-dimensional 
incompressible flow problems, in particular those described by the Navier-Stokes 
equations, will be presented. Finally, the advantages and disadvantages of using the 
vorticity/potential method to solve three-dimensional incompressible flow problems 
will be discussed. 
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FIGURE 1. General three-dimensional domain R.  

2. Potential theory 
The aspect of potential theory which is of importance here is the expression of 

vector fields, in particular solenoidal vector fields, in terms of scalar and vector 
potential fields. The basic result that is presented is essentially a generalization of 
Helmholtz’s theorem (see h i s  1962, p. 70), which states that an arbitrary, bounded, 
continuously differentiable vector field u which is defined throughout three-dimensional 
Euclidean space E3 and vanishes a t  infinity can be expressed thus: 

u = V # + V A A ,  (6) 

where is the scalar potential and A is the vector potential of u. The generalization 
of this result to arbitrary subspaces R c E3, and to vector fields u E L,(R), the Hilbert 
space of Lebesgue square-integrable vector fields defined in R, i.e. those fields u for 
which 

lu12dR a, 

is given in the theorem below. 
Before the theorem is stated, however, it is necessary to describe the topology of a 

general three-dimensional domain R c E,  (see figure I). The boundary of R, denoted 
by aR, comprises (i) the outer boundary So of R, part or ell of which may be at infinity, 
and (ii) m surfaces Si contained entirely within So and so disconnected from So and 
from each other. Thus one can put 

aR = sou s, u s,u ... u snb. 
The domain R may be multiply connected, and contain n holes of type hi, like the 
hole in a torus, so that R is, in fact, (n+ 1)ply connected. Such holes h; are char- 
acterized by closed contours lj and by surfaces s;. The contours of type l j  are contained 
within R and completely encircle the hole hi; thus they cannot be continuously 
shrunk to a point without leaving R. The surfaces of type S; are bounded by closed 
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contours 1; on aR which cannot be continuously shrunk to a point without leaving 
aR. Note that the surfaces Si can also contain holes of type hi. 

The generalization of Helmholtz’s theorem can now be given in the following 
theorem, which is due to Bykhovski & Smirnov (1960). 

THEOREM. The Hilbert space L,(R) can be decomposed thus : 

-7&(R) = Q(R) 0 Ui(R) 0 U’(R) 0 U2(R) O J(R) ,  (7) 
where : 

V$ with @ vanishing on 8R; 
G(R) is the closure of the space of infinitely differentiable vector fields of the form 

Ul(R) is the closure of the space of infinitely differentiable vector fields of the form 
m 

i =1  
2 aiVh, 

such that the (scalar) Laplacian V2hi of hi is identically zero in R, m is the number 
of surfaces Si, ai is a constant, hi = aik (the Kronecker delta) on S, and vanishes on 
So and the two-period of Vhi, /ss Vh, . n dS, 

where n is the unit normal to the element dS of S, vanishes identically unless S is a 
closed surface completely enclosing Xi; 

U‘(R) is the closure of the space of infinitely differentiable vector fields of the form 
V h  such that V2h = 0 in R and the two-period of Vh over any closed surface vanishes 
identically ; 

U,(R) is the closure of the space of infinitely differentiable vector fields of the form 
n 

such that V2hj = 0 in R, n is the number of holes hi, p, is a constant, the one-period 
of Vhj, 

f l h  Vhi . dl, 

vanishes on all closed contours I ,  except for contours I ,  encircling the hole hi, where 
the one-period is unity (this implies that each hi is many-valued), the normal derivative 
of hj vanishes identically on 8R and 

Vhi . n dS 

vanishes identically except on the surface Si, where n is the unit normal to the element 

J ( R )  is the closure of the space of infinitely differentiable vector fields of the form 
V A V such that V . V = 0 in R, the tangential components of V vanish identically on 
aR and 

as of s;; 

vanishes identically for all S;, where n is the unit normal to the element dS of S;. 
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The symbol 0 denotes an orthogonal sum, which means that vectors u1 and u2 
from different subspaces of L,(R) are mutually orthogonal in the sense that their 
inner product 

vanishes identically. 

COROLLARY 1. Any vector field UEL, (R)  can be approximated to within an arbi- 

(8) 

trarily small error thus: 
m n 

i = l  j=1  
u = V$+ x aiVh,+Vh+ x P,Vhj+Vr\V,  

with the various terms defined by the conditions given in the theorem. 

within an arbitrarily small error thus: 
COROLLARY 2. Any vector field UE U,(R) 0 U'(R) @ U,(R) can be approximated to 

u = V#,  (9) 
where Vzq5 = 0 in R 

and V # . n = u . n  on aR. 

within an arbitrarily small error thus: 
COROLLARY 3. Any vector field U E  U'(R)  0 U,(R) 0 J(R) can be approximated to 

u = V r \ A ,  (10) 

where V . A E O  in R, 

A . n = O  on aR 

and J / s ; A n d S  E 0 for all 8;. 

Corollary 1 is almost obvious. Corollary 2 follows from corollary 1 by combining 

to form 4. Corollary 3 is due to Bykhovski & Smirnov (1960, theorem 4.3, p. 32). 
In  what follows, it will be assumed not only that u belongs to L,(R), but also that 

it is infinitely differentiable in R. Although this further assumption is not necessary, 
because all results to be given hold to within an arbitrarily small error for all vector 
fields in LdR), it will simplify matters considerably; for example, expression (8) holds 
exactly for infinitely differentiable vector fields in L,(R). 

Expression (8) is rather too specific a representation of an arbitrary vector field 
for the purposes of determining the flow of an incompressible fluid. A less specific 
expression is required. It follows from corollaries 2 and 3 that the U'(R) and U,(R) 
components of any vector field can be expressed either in the form VH or in the form 
V A H, and hence that any solenoidal vector field can be represented thus: 

u = V # + V A A ,  (11) 

where Vz# = 0 in R and V . A = 0 in R (note that q5 and A in (1  1) are not necessarily 
the same as q5 and A in (9) and (lo), respectively). The use of the less specific representa- 
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tion (11) means, however, that a degree of arbitrariness is involved. Thus one can 
do any of the following. 

(i) Express both the U’(R) and the U,(R) components of u as the curls of vector 
potentials . 

(ii) Express both the U‘(R) and the U,(R) components of u as the gradients of scalar 
potentials. 

(iii) Express the U’(R) component of u as the gradient of a scalar potential and 
the U2(R) component of u as the curl of a vector potential. 

(iv) Express the U’(R) component of u as the curl of a vector potential and the 
U,(R) component of u as the gradient of a scalar potential. 

It will be noted, however, that three of these four possibilities are less convenient 
than the fourth: 

(a) Possibilities (ii) and (iv) involve the expression of the U,(R) component of u as 
the gradient of an (infinitely) many-valued scalar potential. It is clearly more con- 
venient if all variables are single-valued; for this reason, possibilities (ii) and (iv) 
may be rejected. 

( b )  The U.(R) and U’(R) components of the solenoidal vector field u are together 
responsible for all of the flux of u through the boundary aR of the domain R. If both 
of these components are combined into a single component of the form of the gradient 
of a scalar potential then, as corollary 2 shows, this single component will be deflned 
by a Neumann problem. For this reason, possibilities (i) and (iv) may be rejected, 
because they involve the expression of the U’(R) component of u as the curl of a 
vector potential. 

Thus it can be concluded that the most convenient form of the representation (1 1) 
is given by possibility (iii)l that is 

u = V # + V A A ,  (12) 

where V + E  U,(R) 0 U’(R),  V2+ = 0 in R 

and V A A E U , ( R ) @ J ( R ) ,  V . A = O O R .  

The boundary conditions on + and A, which follow directly from corollaries 2 and 3, are 

where u = v on aR; s,, stl and st, are scale factors; n, t, and t, denote the normal and 
two tangential directions to aR; and En, &, and &,denote the normal and two tangential 
co-ordinates relative to aR (see appendix). To conclude this section, note that, if the 
domain R is simply connected, the boundary conditions on A simplify to 



Three-dimensional incompressible flow problems 3 15 

in the same notation. The reason for this is that if the domain R is simply connected 
V A A can have no U,(R) component, which means that V A A E J(R). Use of the 
conditions on vector fields in J(R) given in the theorem then leads to the zero- 
tangential-component conditions on A, while the fact that A is solenoidal leads to the 
condition on the normal derivative of the normal component of A. 

3. Solution of the Navier-Stokes equations 
From the theory presented in the previous section, it is possible to give explicitly 

an unambiguous procedure for solving three-dimensional incompreasible flow problems. 
I n  this section, the analytical formulation of a method for solving the three-dimensional 
time-dependent Navier-Stokes equations will be presented. Clearly, the method can 
be extended in a straightforward manner to deal with other incompressible flow 
problems, such as solution of the steady-state Navier-Stokes equations, or solution of 
the equations of motion of incompressible non-Newtonian fluids. 

Given. (i) The geometry of the flow domain R, a subspace of E3, with boundary 
8R. 

(ii) Boundary conditions on the velocity field u: 

u = v  on 8R, 
where v is such that 

(iii) Initial conditions on the velocity field u: 

u = u, at time t = 0, 

where u, is such that V . u, = 0 and u = v on 8R at time t = 0. 

R for all times t 2 0. 
Qv) The body forces F, which act on the whole of a fluid element, at all points in 

(v) The fluid density p and kinematic viscosity v. 
Solve. The three-dimensional time-dependent Navier-Stokes equations (2) for the 

velocity field u and pressure field p ,  subject to the constraint of the continuity 
equation (1). 

Procedure. (i) Determine the appropriate potential representation of the velocity 
field : 

(a) In general, the velocity field u can be expressed thus: 

u = V # + V A A ,  (17) 

V2q5 = 0 in R (18) 

where # is a scalar potential field satisfying the Laplace equation 

and A is a solenoidal (i.e. V . A  3 0 in R) vector potential field satisfying the Poisson 
equation 

where o = V A u is the vorticity field. 
( b )  The boundary conditions on 

A A = - V A V A A = - W  in R, (19) 

and A depend on the nature of the flow at the 
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boundary aR of the flow domain and on the topological properties of the flow domain, 
respectively. 

(b  1) If there is flow through any part of aR, or 8R is itself moving, then the boundary 
condition on q5 is 

where v, denotes the normal component of v, s, is a scale factor and f,  is a co-ordinate 
normal to aR (see appendix). If there is no flow through any part of aR, and aR is not 
moving at  any point, then 

~ ; l a # / a f ,  = vn on aR, (20) 

so that 

s;la#/af, = 0 on aR, 
Vq5 E 0 in R and on aR. 

(b  2) If the domain R is simply connected, the boundary conditions on A are 

If the domain R is multiply connected, the boundary conditions on A are 

(st, A,,) = vt2 - -L!3! J 
Sn St, %n StZ a f t p  

l a  +-- 

where the subscripts n, t ,  and t,  denote the normal and two tangential directions to 
aR, f denotes a co-ordinate, and s,, st, and st, are scale factors (see appendix). 

(c) The initial conditions on q5 are given by (18) and (20) or (21) from the initial 
conditions on u. The initial conditions on A are given by (19) and (23) or (24) from 
the initial conditions on U. 

(ii) Obtain the evolution equation for the vorticity: 
(a )  Taking the curl of each of the terms in the Navier-Stokes equations (2) gives 

the vorticity transport equation: 

awlat + (u . V) w - (a. V) u = v A o  + V A F, 

ao/at+ ( (V#+V A A) . V ) w  - (w .V)  (V# + V  A A) = v A w + V  A F. 

(26) 

(26) 

(b)  The initial conditions on w are given from the definition of w by the initial 
conditions on u. The boundary conditions on w, which are not all known a priori for 
times t > 0 (so that an iterative scheme must in general be used to determine them), 
are given from the definition of o by a knowledge of u in the neighbourhood of and 
on the boundary aR. 

where w = V A u is the vorticity. Substituting for u from (1 7) gives 

(iii) Implement the solution: 
Equations (18), (19), (20) or (21), (23) or (24) and (26) form a complete set defining 

q4, A and w at all points in the flow domain R and on its boundary aR, for all times 
t 2 0. In general, the implementation of the solution will be of a numerical nature, and 
will involve discretization of the flow field and time, and replacement of the equations 
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and boundary and initial conditions by numerical analogues. (The manner in which the 
discretization is performed and the choice of numerical analogues depend on the 
particular problem to be solved.) The fields q5, A and o can then be determined 
approximately at all points in the discretized flow domain R and on its boundary 
aR, for all discretized times t 0. Finally, the fields u andp can be obtained (approxi- 
mately) by substitution back into (17) and (2), respectively. 

4. The vorticity/potential method : discussion and conclusions 
The procedure given in the preceding section for solving, in particular, the three- 

dimensional time-dependent Navier-Stokes equations for incompressible flows is 
based on the quite general theory of 0 2. Although the basic theory presented there is 
not new, the results relevant to hydrodynamics problems are not well known and are 
generally given either incorrectly or in an over-complex (and hence impractical) form. 
Here the relevant results are given both correctly and in a simple form. The results 
are applicable to quite general incompressible flow problems; failing cases, i.e. 
non-L,(R) velocity fields, are unlikely to be encountered physically, because infinite 
kinetic energy would be implied. Thus the obvious advantages of the vorticity/ 
potential method are that: 

(i) it is applicable to quite general incompressible flow problems; 
(ii) it overcomes the difficulties over imposition of the continuity constraint and 

(iii) it is straightforward to use in practice. 
Disadvantages associated with the method, on the other hand, are that: 
(i) use of the vorticity/potential method involves seven dependent variables (three 

vorticity and three vector-potential components plus a scalar potential), whereas use 
of the primitive variables involves only four (three velocity components plus pressure); 

(ii) unless a Cartesian co-ordinate system is used, the equations involved in the 
vorticity/potential method are much more complex than the equations associated 
with the primitive variables; 

(iii) the primitive variables have a direct physical meaning, as does vorticity, but 
the potentials do not. 

Clearly, for a given problem, certain advantages and/or disadvantages will weigh 
more heavily than others. But, for a variety of problems, such as three-dimensional 
natural convection (see Aziz & Hellums 1967; Mallinson & de Vahl Davis 1973)) 
thermal convection in confined porous media (see Holst & Aziz 1972)) flow between 
parallel flat plates (see Hirasaki 1967)) and uniform and linear-shear ffow past a 
sphere (see Richardson 1976)) the method has been used successfully. Its use in other 
three-dimensional flow problems, whether time-dependent or steady, Newtonian or 
non-Newtonian, can, therefore, be confidently recommended. 

lack of a pressure evolution equation, inherent in incompressible flow problems; 
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Appendix 
It is well known that any piecewise smooth surface aR bounding a domain R c E3 

can be described locally by a mutually orthogonal curvilinear co-ordinate system 
(tn, f&&J nearly everywhere, where n denotes the normal and t ,  and t ,  the two 
tangential directions to aR (see figure 2) .  By convention, this co-ordinate system 
(tn, &,, &,) is taken to be right-handed, and 5, is taken to denote the outer normal. 

Let r = r(&, &,, &,) be the position vector of a point on aR. A unit tangent in the 
& direction, where i denotes n, t ,  or t,, is 

so that ar/a& = si ei, (A 2) 

where si = lar/agil. (A 3) 

The quantities si are called scale factors. Expressions for the gradient, divergence and 
curl operators in terms of the orthogonal curvilinear co-ordinates are then (see, for 
example, Spiegel 1959, p. 137) 

By convention, one generally writes n for en. 
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FIGURE 2. Co-ordinate system on the boundary aR of R. 
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